1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
| #include <opencv2/opencv.hpp>
#import "OpenCVTool.h" using namespace std; using namespace cv; const float inlier_threshold = 2.5f; // Distance threshold to identify inliers with homography check const float nn_match_ratio = 0.8f;
+(BOOL)checkImage:(NSString *)path1 withImage:(NSString *)path2 { const char * cpath = [path1 cStringUsingEncoding:NSUTF8StringEncoding]; const char * cpath1 = [path2 cStringUsingEncoding:NSUTF8StringEncoding]; Mat img1 = imread(cpath, IMREAD_GRAYSCALE); Mat img2 = imread(cpath1, IMREAD_GRAYSCALE); Mat homography; vector<KeyPoint> kpts1, kpts2; Mat desc1, desc2; Ptr<AKAZE> akaze = AKAZE::create(); akaze->detectAndCompute(img1, noArray(), kpts1, desc1); akaze->detectAndCompute(img2, noArray(), kpts2, desc2); BFMatcher matcher(NORM_HAMMING); vector< vector<DMatch> > nn_matches; matcher.knnMatch(desc1, desc2, nn_matches, 2); //-------------------- vector<KeyPoint> matched1, matched2; vector<Point2f> obj, scene; for(size_t i = 0; i < nn_matches.size(); i++) { DMatch first = nn_matches[i][0]; float dist1 = nn_matches[i][0].distance; float dist2 = nn_matches[i][1].distance; if(dist1 < nn_match_ratio * dist2) { matched1.push_back(kpts1[first.queryIdx]); matched2.push_back(kpts2[first.trainIdx]); //-- Get the keypoints from the good matches obj.push_back( kpts1[first.queryIdx].pt ); scene.push_back( kpts2[first.trainIdx].pt ); } } homography = findHomography( obj, scene, RANSAC ); vector<DMatch> good_matches; vector<KeyPoint> inliers1, inliers2; for(size_t i = 0; i < matched1.size(); i++) { Mat col = Mat::ones(3, 1, CV_64F); col.at<double>(0) = matched1[i].pt.x; col.at<double>(1) = matched1[i].pt.y; col = homography * col; col /= col.at<double>(2); double dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) + pow(col.at<double>(1) - matched2[i].pt.y, 2)); if(dist < inlier_threshold) { int new_i = static_cast<int>(inliers1.size()); inliers1.push_back(matched1[i]); inliers2.push_back(matched2[i]); good_matches.push_back(DMatch(new_i, new_i, 0)); } } double inlier_ratio = inliers1.size() / (double) matched1.size(); double match = (double) matched1.size()/inliers2.size() ;
cout << "A-KAZE Matching Results" << endl; cout << "*******************************" << endl; cout << "# Keypoints 1: \t" << kpts1.size() << endl; cout << "# Keypoints 2: \t" << kpts2.size() << endl; cout << "# Matches: \t" << matched1.size() << endl; cout << "# Inliers: \t" << inliers1.size() << endl; cout << "# Inliers Ratio: \t" << inlier_ratio << endl; cout << endl; if (inlier_ratio >= 0.7&&match>0.15) { return YES; }else { return NO; } }
|
主要参考例子例子1例子2
其中homography 需要自己计算一下